Multiround Transfer Learning and Modified Generative Adversarial Network for Lung Cancer Detection

نویسندگان

چکیده

Lung cancer has been the leading cause of death for many decades. With advent artificial intelligence, various machine learning models have proposed lung detection (LCD). Typically, challenges in building an accurate LCD model are small-scale datasets, poor generalizability to detect unseen data, and selection useful source domains prioritization multiple transfer learning. In this paper, a multiround modified generative adversarial network (MTL-MGAN) algorithm is LCD. The MTL transfers knowledge between prioritized target domain get rid exhaust search datasets among maximizing transferability with process, avoiding negative via customization loss functions aspects domain, instance, feature. regard MGAN, it not only generates additional training data but also creates intermediate bridge gap domains. 10 benchmark chosen performance evaluation analysis MTL-MGAN. significantly improved accuracy compared related works. To examine contributions individual components MTL-MGAN, ablation studies conducted confirm effectiveness algorithm, MTL, avoidance functions, MGAN. research implications feasibility enhance optimal solution provide generic approach using

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Transfer with Generative Adversarial Network

Face transfer animates the facial performances of the character in the target video by a source actor. Traditional methods are typically based on face modeling. We propose an endto-end face transfer method based on Generative Adversarial Network. Specifically, we leverage CycleGAN to generate the face image of the target character with the corresponding head pose and facial expression of the so...

متن کامل

Metric Learning-based Generative Adversarial Network

Generative Adversarial Networks (GANs), as a framework for estimating generative models via an adversarial process, have attracted huge attention and have proven to be powerful in a variety of tasks. However, training GANs is well known for being delicate and unstable, partially caused by its sigmoid cross entropy loss function for the discriminator. To overcome such a problem, many researchers...

متن کامل

Language and Noise Transfer in Speech Enhancement Generative Adversarial Network

Speech enhancement deep learning systems usually require large amounts of training data to operate in broad conditions or real applications. This makes the adaptability of those systems into new, low resource environments an important topic. In this work, we present the results of adapting a speech enhancement generative adversarial network by finetuning the generator with small amounts of data...

متن کامل

Use of Generative Adversarial Network for Cross-Domain Change Detection

This paper addresses the problem of cross-domain change detection from a novel perspective of image-to-image translation. In general, change detection aims to identify interesting changes between a given query image and a reference image of the same scene taken at a different time. This problem becomes a challenging one when query and reference images involve different domains (e.g., time of th...

متن کامل

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Intelligent Systems

سال: 2023

ISSN: ['1098-111X', '0884-8173']

DOI: https://doi.org/10.1155/2023/6376275